

Abstracts

Radial Line Transducer (Short Papers)

E. Sawado. "Radial Line Transducer (Short Papers)." 1982 Transactions on Microwave Theory and Techniques 30.11 (Nov. 1982 [T-MTT]): 2049-2050.

The purpose of this paper is to give a new excitation method of a radial-electromagnetic wave by a metallic cylinder with elliptical cross section. It was ascertained that the radial wave propagates in a medium of permeability of quantity $\mu_{\text{sub perp}}$. The quantity $\mu_{\text{sub perp}}$ is given by $\mu_{\text{sub perp}} = (\mu^2 - \kappa^2)/\mu$, where μ and κ are the diagonal and nondiagonal components of the tensor permeability of a gyrotropic medium, respectively. The radial wave has interesting properties that this mode has not cutoff below the critical frequency $\omega = \gamma(BH)^{1/2}$, where ω is the angular frequency, $\gamma = 1.76 \times 10^{7/2}$ (oe s)⁻¹ in CGS unit), $B = \mu_0/(H + M_s)$, the magnetic flux density, H the magnetic field, and M_s the saturation magnetization. Ganguly and Webb presented an initial theory and some experiments for a magnetostatic surface wave single bar transducer. These investigations have concluded that the lowest operating frequency of Ganguly-type delay line is $\gamma(BH)^{1/2}$. Below this cutoff, no surface modes can exist. In view of the above, investigation of a radial wave type delay line should produce developments in low frequency microwave (0.5 to 1.5 GHz) applications.

[Return to main document.](#)